Agriculture Past Papers

SIR ARTHUR LEWIS COMMUNITY COLLEGE DIVISION OF AGRICULTURE
 ASSOCIATE DEGGRE IN GENERAL AGRICULTURE 2010/2011 ACADEMIC YEAR END OF FIRST SEMESTER EXAMS

Instructions: 1. This paper consists of four (4) questions answer any four (4) questions.
2. Collaboration will result in zero for this exam
3. All communication devices should be off.
4. Answer all questions and show ALL working clearly.

1. a) Write the names of the following compounds:
I. KHCO_{3}
IV. $\mathrm{P}_{2} \mathrm{O}_{5}$
II. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
V. CO_{2}
III. $\mathrm{N}_{2} \mathrm{O}$
b) Write the correct chemical formula for the following compounds:
I. Sodium Carbonate
IV. Carbon tetrachloride
II. Boron triflouride
V. Sulphur trioxide
III. Potassium nitrate
2. The reaction of powdered aluminum $\mathrm{Al}_{(\mathrm{s})}$ and iron (II) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ produces Aluminum oxide $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$ and iron $\mathrm{Fe}_{(\mathrm{l})}$. This reaction releases so much heat the iron that the elemental iron is in the molten form. Because of this, railroads use this reaction to provide molten steel to weld steel rails together when laying track. Suppose that in one batch of reactants 4.20 mol Al was mixed with $1.75 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$.

Assuming that the relative atomic masses (R.A.M.) of the following elements are:

$$
\begin{equation*}
\mathrm{Fe}-56 \quad \mathrm{O}-16 \quad \mathrm{Al}-27 \tag{2}
\end{equation*}
$$

a. Write a balanced equation for the reaction.
b. Which is the limiting reactant?
c. How many moles of the excess reactant are left over?
d. Calculate the mass of iron (in grams) that can be formed from this mixture of reactants.
3). In a titration $30.0 \mathrm{~cm}^{3}$ of a solution of Sulphuric acid are required for neutralization of $35.0 \mathrm{~cm}^{3}$ of $0.045 \mathrm{~mol} / \mathrm{dm}^{3}$ Sodium hydroxide.
a) Write a balanced equation for the reaction including state symbols.
b) Find the concentration of sulphuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$.
c) Calculate the mass of sodium sulphate formed.
d) Determine the number of molecules of water formed.

Assume the R.A.Ms to be:
H ---- 1
O --- 16
S -- 32
$\mathrm{Na}---23$

Avogadro's constant is 6.022×10^{23}
4.
a) In your own word explain what a reversible reaction is. [2]
b) List the factors which affect the position of equilibrium of reversible react. [4]
c) For this reaction endothermic reaction:

$$
2 \mathrm{HI}_{(\mathrm{g})} \quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$

$$
\mathrm{K}_{\mathrm{c}}=0.016 \text { at } 520^{\circ} \mathrm{C}
$$

Calculate the concentration of all species at equilibrium in a $6 \mathrm{dm}^{3}$ container starting with:
i. $\quad 0.4$ moles of HI
ii. $\quad 0.2$ moles $\mathrm{H}_{2}, 0.2$ moles I_{2}
iii. $\quad 0.4$ moles $\mathrm{H}_{2}, 0.4$ moles I_{2}
d) What is meant the term "endothermic reaction"
e) Make reasonable prediction about the position of equilibrium:
i. If the temperature is increased
[2]
ii. If the temperature is decreased.

